7,160 research outputs found

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    The Search for Higher TcT_c in Houston

    Full text link
    It is a great pleasure to be invited to join the chorus on this auspicious occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high temperature superconductivity, I am forever grateful to Professor Alex Mueller and Dr. Georg Bednorz "for their important breakthrough in the discovery of superconductivity in the ceramic materials" in 1986 as described in the citation of their 1987 Nobel Prize in Physics. It is this breakthrough discovery that has ushered in the explosion of research activities in high temperature superconductivity (HTS) and has provided immense excitement in HTS science and technology in the ensuing decades till now. Alex has not been resting on his laurels and has continued to search for the origin of the unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the discovery of superconductivity in ceramic materials" in 1986 has changed the world of superconductivit

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    Background: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. Methods: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. Results: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. Conclusions: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    BACKGROUND: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. METHODS: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. RESULTS: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. CONCLUSIONS: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    (pi,pi)-electronic order in iron arsenide superconductors

    Full text link
    The distribution of valence electrons in metals usually follows the symmetry of an ionic lattice. Modulations of this distribution often occur when those electrons are not stable with respect to a new electronic order, such as spin or charge density waves. Electron density waves have been observed in many families of superconductors[1-3], and are often considered to be essential for superconductivity to exist[4]. Recent measurements[5-9] seem to show that the properties of the iron pnictides[10, 11] are in good agreement with band structure calculations that do not include additional ordering, implying no relation between density waves and superconductivity in those materials[12-15]. Here we report that the electronic structure of Ba1-xKxFe2As2 is in sharp disagreement with those band structure calculations[12-15], instead revealing a reconstruction characterized by a (pi,pi) wave vector. This electronic order coexists with superconductivity and persists up to room temperature

    Deep convolutional neural network with 2D spectral energy maps for fault diagnosis of gearboxes under variable speed.

    Get PDF
    For industrial safety, correct classification of gearbox fault conditions is necessary. One of the most crucial tasks in data-driven fault diagnosis is determining the best set of features by analyzing the statistical parameters of the signals. However, under variable speed conditions, these statistical parameters are incapable of uncovering the dynamic characteristics of different fault conditions of gearboxes. Later, several deep learning algorithms are used to improve the performance of the feature selection process, but domain knowledge expertise is still necessary. In this paper, a combination domain knowledge analysis and a deep neural network is proposed. By using the input acoustic emission (AE) signal, a two-dimensional spectrum energy map (2D AE-SEM) is created to form an identical fault pattern for various speed conditions of gearboxes. Then, a deep convolutional neural network (DCNN) is proposed to investigate the detailed structure of the 2D input for final fault classification. This 2D AE-SEM offers a graphical depiction of acoustic emission spectral characteristics. Our proposed system offers vigorous and dynamic classification performance through the proposed DCNN with a high diagnostic fault classification accuracy of 96.37% in all considered scenarios

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe
    corecore